
International Journal of Heat and Fluid Flow 29 (2008) 1054–1059
Contents lists available at ScienceDirect

International Journal of Heat and Fluid Flow

journal homepage: www.elsevier .com/locate / i jhf f
Onset of vortex shedding in planar shear flow past a square cylinder

A. Lankadasu, S. Vengadesan *

Department of Applied Mechanics, IIT Madras, Chennai, Tamil Nadu 600 036, India
a r t i c l e i n f o

Article history:
Received 15 June 2007
Received in revised form 22 February 2008
Accepted 23 February 2008
Available online 14 April 2008

Keywords:
Square cylinder
Onset of vortex shedding
Shear parameter
0142-727X/$ - see front matter � 2008 Elsevier Inc. A
doi:10.1016/j.ijheatfluidflow.2008.02.016

* Corresponding author. Tel.: +91 44 22574063; fax
E-mail address: vengades@iitm.ac.in (S. Vengadesa
a b s t r a c t

Incompressible linear shear flow across a square cylinder is numerically analyzed by solving unsteady
2-D Navier–Stokes equations. Simulations are carried out for three sets of shear parameters, 0.0, 0.1
and 0.2 and two sets of solid blockage ratios, 6.25% and 10%. The aim of the present simulations is to find
out the influence of shear on the onset of periodic time dependent flow, which is observed using time
varying lift coefficient. With increasing shear, the critical Reynolds number, at which flow becomes time
dependent, is reduced. The mean drag coefficient decreases either with increasing shear for a particular
Reynolds number or with increasing Reynolds number for a particular shear parameter.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The behavior of a fluid flow past a body is characterized by the
relative significance of the viscous effect compared to the inertia
effect. The ratio of these two effects is called Reynolds number,
Re. The behavior of such flows, when Re is increased, undergoes a
sequence of well established bifurcations. For example in the case
of square cylinder in uniform cross flow, at very low Re, the flow is
laminar, steady and does not separate from the cylinder. With the
increasing Re, the flow separates from the trailing edge but remain
steady and laminar up to Re of about 50 (Sohankar et al., 1998). Be-
yond this Re, the flow undergoes Hopf bifurcation to develop into a
time dependent periodically oscillating wake. With a further in-
crease in Re, localized regions of high vorticity are shed alterna-
tively from either side of the cylinder and are convected
downstream, the flow is still laminar and 2-D. Increasing the Re va-
lue, the flow undergoes a further bifurcation at around Re = 150–
200 and becomes three-dimensional but remains time periodic
(Robichaux et al., 1999; Sohankar et al., 1999; Saha et al., 2003;
Luo et al., 2007). By increasing the Reynolds number further, the
flow becomes chaotic and eventually transition to turbulence oc-
curs. A similar sequence of bifurcations also occurs for other
cross-sections like circular, elliptic, etc. (Jackson, 1987; William-
son, 1996; Balachandar and Parker, 2002; Zhang and Balachandar,
2006). The sequence of bifurcations for the case of flow over a
square cylinder, when the approach flow is planar shear, is likely
to be similar.
ll rights reserved.

: +91 44 22574052.
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There are typical situations, when the approach flow is not uni-
form. For example, when a small cylinder is placed in the separated
shear layer of a large main cylinder to alter the vortex shedding
phenomena behind the main cylinder, the small cylinder is inevita-
bly subjected to the effect of shear induced from the large cylinder.
Onset of periodic flow from the small cylinder induces oscillatory
forces on the body, which may trigger flow-induced vibration,
and in turn alter the vortex shedding on the main cylinder. For
the investigation of velocity gradient effects, the simplest case of
a non-uniform flow is the uniform shear flow, which has a linear
distribution of the longitudinal velocity component along the
transverse direction. It has been shown by past investigations on
circular cylinders, e.g., Jordan and Fromm (1972), Kiya et al.
(1980), Kwon et al. (1992), Mukhopadhyay et al. (1999), Xu and
Dalton (2001), Sumner and Akosile (2003), that the flow approach-
ing with linear shear has greatly altered the vortex dynamics in the
wake when compared to the uniform flow case. They attributed
this to the constant vorticity embedded in the free-stream. For
square-sectional cylindrical bodies, shear effects have been re-
ported by, e.g., Ayukawa et al. (1993), Hwang and Sue (1997), Saha
et al. (2001), Cheng et al. (2005, 2007). Ayukawa et al. (1993) con-
ducted experiments and performed discrete vortex simulations at
Re = 4000. They observed that with high shear parameters the flow
becomes self similar downstream of the cylinder. Saha et al. (2001)
studied numerically the same problem for wide range of Reynolds
numbers. They showed that due to influence of shear, Karman vor-
tex street mainly consists of clockwise vortices, whose decay is
very slow when compared to that of uniform flow. However, in
their study the lateral width, w, of the flow domain was restricted
such that the streamwise velocity in the free-stream was
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constantly positive (u > 0), that is the free-stream could not flow in
the reverse direction due to the imposed shear rate. Hence, per-
haps their studies are limited to low shear parameters and with
high blockage ratio. Recently, Cheng et al. (2005, 2007) have re-
ported that vortex shedding disappeared for large shear parame-
ters. The Strouhal number decreases as the shear parameter
increases. The drag coefficient tends to decrease with increasing
shear parameter.

The objective of the present study is twofold. First, to investi-
gate the onset of periodic time dependent flow the approach flow
is linear planar shear across the square cylinder. To this end, the
instantaneous lift coefficient is examined. Second, the blockage ra-
tio (B = d/w, where d is the width of the cylinder and w is the lateral
width of the computational domain) effect on the instantaneous
and mean quantities are examined for two sets of blockage ratios.
The non-dimensional shear parameter is defined as K = Gd/U,
where G is the streamwise velocity gradient in the transverse
direction and U is centerline velocity at the inlet. In this study, K
is varied as 0.0, 0.1 and 0.2.

2. Physical and mathematical formulation

The problem under consideration in the present study is 2-D,
unsteady, viscous and incompressible flow with constant fluid
properties around an isolated square cylinder. The equations for
continuity and momentum, in non-dimensional form, are ex-
pressed as

oui

oxi
¼ 0 ð1Þ

oui

ot
þ uj

oui

oxj
¼ � op

oxi
þ 1

Re
o2ui

oxjoxj
ð2Þ

where indices i, j = 1, 2 refer to the streamwise (x), and crosswise (y)
directions of the Cartesian coordinate system, respectively. All geo-
metrical lengths are normalized with size of cylinder side d, veloc-
ities with the speed of the undisturbed stream at the center of the
cylinder U, physical times with d/U, and pressure with qU2;where
q is the fluid density. Coefficient of drag and Strouhal number are
defined as �CD ¼ 2�FD=qU2; St = fd/U, respectively, where �FD is the
mean drag force per unit area and f is the shedding frequency.

Fig. 1 shows the computational domain. The flow is described in
a Cartesian coordinating system (x and y) in which the x-axis is
aligned with the inlet flow direction (streamwise direction), the
y-axis is normal to the x-axis (cross-stream direction). The origin
is centered at the mid point of the upstream face of the cylinder.
The first grid point from the body is maintained at 0.008d. For get-
ting better predictions, the number of points on each face of the
cylinder is fixed at 50. To adjust these points on the entire face,
we followed the non-uniform distribution of nodes on the each
face of the cylinder. At the corners, we maintained minimum dis-
tance and then uniformly stretched up to the center of the face
from both the corners. The grid distribution in the rest of domain
both in the streamwise as well as in the lateral direction was made
U 
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x

y 
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Fig. 1. Computational domain and coordinate system.
non-uniform with constant stretching ratio. The stretching ratio is
defined as ratio of large to small cell width of two consecutive cells
in the respective direction. The value of the stretching ratio in all
the directions is not same, but constant in the respective direction.
Typical stretching ratios used in the present simulation are 30, 25
and 25 in the upstream direction, downstream direction and cross-
stream direction, respectively.
3. Numerical details

An incompressible finite difference code with staggered grid
arrangement is used. After discretization, Eqs. (1) and (2) were
solved with an explicit scheme. Third order upwind biased scheme
for convective terms, central differencing scheme for diffusion
terms and second order accurate Adams–Bashforth scheme for time
marching was used. Time marching was done in two stages. In the
first stage, two velocity components are calculated using previous
values of velocities and pressure for all the cells. However these
values do not necessarily satisfy the mass conservation criteria
imposed by the continuity equation (i.e., divergence-free condition
for incompressible flow). Thus, in the second stage, adjustment
must be made to ensure mass conservation. This is achieved by
using highly simplified marker and cell (HSMAC) algorithm (Hirt
and Cook, 1972). Basic validation of the code can be found in
Nakayama and Vengadesan (2002) and Kumaran and Vengadesan
(2007).

The time marching calculations were started with the fluid at
rest. The conditions necessary to prevent the numerical oscillations
are determined from the CFL condition and the restriction on the
grid Fourier number (Hwang and Sue, 1997; Saha et al., 2001). In
the present study, residual of continuity equation for mass conser-
vation, on each cell was set a maximum value of 0.0005.

At the inlet, a linear velocity profile (u = U + Gy, v = 0) is as-
sumed, where U is the center line velocity. At outlet boundary,
the convective boundary condition (oui/ot + Uc(oui/oxj) = 0) is used
for both velocity components, where Uc is the convective speed
and in the present work it is space-averaged streamwise exit veloc-
ity. No-slip conditions are prescribed at the body surface. At top
and bottom boundaries, in the present work, we have used
ou=oy ¼ K; v ¼ 0 (Kang, 2006; Lankadasu and Vengadesan, 2007).
It should be noted that, if the K value is zero, this condition results
in symmetry condition which is the most commonly used far field
boundary condition (for example, Saha et al., 1999).
4. Validation

In order to validate the present code, first we performed simu-
lation of uniform flow past a square cylinder at Reynolds number
100 and compared with the available results. Sufficient literature
is available for the same test case. Compilation of domain size
and flow parameters used in these previous studies is presented
in Table 1. Except Cheng et al. (2005, 2007), all the remaining
authors considered here, had restricted their lateral width, to avoid
the negative velocity condition on the lower side at the far field
boundary for high inlet shear rate. Similarly, in the present study
the lateral width is also restricted to some finite value to keep
the inlet velocity always positive. Extent of the domain size on
the upstream side of the cylinder is varied from 5 to 40 times of
the cylinder width (or diameter). For the validation purpose, the
inlet domain is fixed at 10d.

It is well known fact that, selection of outlet boundary condition
dictates the downstream domain size. The main aim of the down-
stream distance and exit boundary condition is that, it should not
disturb the outgoing flow. It has been shown that Neumann
boundary condition (gradient free) requires considerably longer



Table 3
Grid independence study at Re = 100, K = 0.0, Dt = 0.0005 and B = 6.25%: d is the first
grid point from the cylinder

I � J d �CD CL,rms St

226 � 195 0.008 1.47 0.159 0.143
260 � 220 0.007 1.47 0.157 0.143

Table 4
Comparison of mean quantities between two inlet domain sizes with blockage ratio
10%

Shear parameter Re B = 10%

Xu = 10d Xu = 20d

St �CD
�CL St �CD

�CL

K = 0.0 45 – – – – 1.602 0.000
47 – – – 0.122 1.579 0.000
44 – 1.604 0.000 – – –
46 0.130 1.588 0.000 – – –

K = 0.1 42 – – – – 1.577 �0.077
44 – – – 0.122 1.555 �0.071
40 – 1.608 �0.084 – – –
42 0.122 1.592 �0.081 – – –

K = 0.2 38 – – – – 1.527 �0.147
40 – – – 0.107 1.514 �0.140
35 – 1.579 �0.164 – – –
37 0.114 1.560 �0.157 – – –

Table 1
Compilation of computational parameters: Re, Reynolds number based on the centerline velocity; w, lateral width; Xu, distance for leading edge to inlet; X, total length of the
domain in the streamwise direction; K, shear parameter; NU, non-uniform grid; SC, square cylinder; CC, circular cylinder

References Re K w Xu X d Grid Body

Hwang and Sue (1997) 500–1500 0–0.25 8 5 20 0.01 NU SC
Saha et al. (1999) 250–1500 0–0.2 10 – 40 – U SC
Cheng et al. (2005) 100 0–0.5 25 12 43 – NU SC
Kang (2006) 50–160 0–0.2 10 40 80 0.017 NU CC
Kwon et al. (1992) 600–1600 0–0.25 15–6.2 – – – – CC
Kiya et al. (1980) 35–1500 0–0.25 37–6 – – – – CC
Lei et al. (2000) 80–1000 0–0.25 8 5 30 0.017 NU CC
Present 35–47 0–0.2 10&16 20 40 0.008 NU SC
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distance compared to the convective boundary condition. In the
present study, convective boundary condition has been used,
hence, 20d downstream of the body is sufficient for this low Re
number study (Sohankar et al., 1998).

The lateral width, w of the domain considered in this study is 10
and 16 times of cylinder width, d. For these lateral widths, the solid
blockage ratio calculated using B = d/w is 10% and 6.25%, respec-
tively. The criterion for selection of the blockage ratio is that, veloc-
ity should always be positive at the inlet for all the shear
parameters considered in this study. Hence, K = 0.2 case is studied
with B = 10% only, as B = 6.25% results in negative velocity.

Influence of the first grid point (d) on the results is also studied.
We consider two values viz. d = 0.007d and 0.008d. For both the
grids, we used same stretching factor and also maintained same ra-
tio of the largest width of the cell to the smallest width of the cell
in the domain. With these constraints, we arrived 226 � 195 for
d = 0.008 and 260 � 220 for d = 0.007d. These d values are less than
or equal to the d used in the literature (see, Table 1). A constant
non-dimensional time step, Dt = 0.0005 used in the present simu-
lation has largely satisfied the requirement to capture all the fre-
quencies involved in this flow. Results obtained using these two
grids are given in Table 2. For both the grids, the global parameters
like �CD and St are same up to second and third digit, respectively.
Whereas, sensitive parameter like root mean square value of the
lift coefficient is varied approximately 1.25%. Hence, for further
calculation, we considered the grid of 226 � 195. Calculated global
parameters like mean drag coefficient, Root mean square value of
the lift coefficient and Strouhal number using the present grid
and the computational domain (see, Fig. 1) with the blockage ratio,
B = 6.25% are compared with the available literature for Re = 100
and K = 0.0 in the Table 3. The small discrepancy among the results
is attributed to the different solid blockage ratios, boundary condi-
tions, domain size, grid resolution and numerical schemes. Except
Okajima (1982), all other authors used numerical simulations. Our
simulated results match reasonably well with the recently pub-
lished results. Further validation of the code with inlet shear flow
Table 2
Comparison of calculated global parameters with available literature for Re = 100 and
K = 0.0

References St CL,rms
�CD Dt

Okajima (1982) 0.135–0.140 – –
Davis and Moore (1982) 0.154 – 1.64 0.05
Franke and Schonung (1990) 0.154 – 1.61 0.025
Kelkar and Patankar (1992) 0.13 – 1.80 0.125
Sohankar et al. (1998) 0.146 0.156 1.47 0.025
Robichaux et al. (1999) 0.154 – 1.53
Jan and Sheu (2004) 0.144 – – 0.01
Cheng et al. (2007) 0.144 0.152 1.44
Present 0.143 0.159 1.47 0.0005

Except Okajima (1982) all are numerical results.
past the bluff body is reported in Lankadasu and Vengadesan
(2007).

Since the present simulations with inlet shear condition are car-
ried out at much lower Reynolds number than Re = 100, it is essen-
tial to ascertain the sufficiency of the inlet domain size. For this
purpose, we considered two inlet domain sizes viz. Xu = 10d and
20d and results are compared in Table 4. The Reynolds number cor-
responds to before and after the critical Reynolds number for a par-
ticular inlet domain size. This otherwise means the inlet domain
length has influence on the critical Reynolds number. Correspond-
ingly, the mean quantities also showed dependence. The inlet
domain size further increased to 25d and found negligible differ-
ence between 20d and 25d. Hence, finally 20d has been selected
for the rest of the calculations.

5. Results and discussion

For a particular Reynolds number, simulation starting from the
rest eventually reaches steady or unsteady state depending on the
Reynolds number value. For identification of onset of periodic flow,
we have taken instantaneous lift coefficient as the basis. Many un-
steady simulations have been done to identify the onset of periodic
time dependent flow phenomenon. Different simulations corre-
spond to different Reynolds numbers, and for every case, it is
increased in steps of two. Therefore, the actual critical Reynolds
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number falls in between. Hence, the predicted critical Reynolds
numbers, Recr have an error bar of ±1. Though the bifurcation or
stability analysis also gives critical Reynolds number, it does not
reveal flow developing features. Suppose if Re is below the critical
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Fig. 2. Instantaneous lift coefficient before and after critical Reynolds number: (a) K =
Re = 38; (f) K = 0.2, Re = 40.
Recr, it approaches steady state after disturbance due to the initial
conditions died out, whereas, if it is above the critical Re, the dis-
turbance is amplified and reaches a stable periodic time dependent
flow. The transition behavior is characterized by the velocity and
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0.0, Re = 45; (b) K = 0.0, Re = 47; (c) K = 0.1, Re = 42; (d) K = 0.1, Re = 44; (e) K = 0.2



(a) K=0.0, Re=45 

(b) K=0.0, Re=47 

(e) K=0.2, Re=38 

(f) K=0.2, Re=40 

(c) K=0.1, Re=42 

(d) K=0.1, Re=44 

Fig. 3. The contours of instantaneous spanwise component of vorticity for B = 10%:
contour levels are x = ±0.5, ±1, ±5 and Dxy = 0.05, 0.1, and 0.2, respectively.
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pressure signals. Results are analyzed and discussed with the help
of instantaneous lift signal, instantaneous spanwise vorticity, mean
drag and lift coefficients.

5.1. Variation of lift coefficient

Fig. 2 shows the variation of instantaneous lift coefficient with
time for six Reynolds numbers and blockage ratio of 10% for the
case of uniform flow, i.e., without shear (K = 0.0). Fig. 2a and b is
for Reynolds number, Re = 45 and 47. Sohankar et al. (1998) and
Kelkar and Patankar (1992) have reported that the flow is steady
at this Reynolds number. Our present simulations also confirmed
the same for Re = 45 but, unsteady behavior for Re = 47. The ampli-
tude of the lift variation about the mean is continuously decreasing
with time and finally approaching the zero for Re = 45. Even though
the magnitude of lift coefficient is very small, our objective is to
show that the trend is followed. In contrast to the previous one,
the amplitude of the instantaneous lift coefficient from the mean
is increasing with time. From the above observations, we can con-
clude that critical Reynolds number, at which onset of periodic vor-
tex shedding occurs should be in between these two Reynolds
numbers. Hence, we can say that critical Reynolds number is
Recr = 46 ± 1.

Now we carry out simulations to study the influence of shear
parameter on the Recr. Fig. 2c and d is for variation of instanta-
neous lift coefficient for shear parameter K = 0.1. The simulation
is initiated with uniform velocity throughout the domain except
at inlet boundary where uniform shear along the lateral direction
is imposed. As the simulation progresses, the flow gets adjusted
to the real state. During this initial developing period, the flow
experiences lot of disturbance. Due to these initial disturbances,
the lift coefficient exhibited initially high magnitude of oscilla-
tions, but with evolution of flow it gets accommodated to the
flow features. For the considered blockage ratio, the flow at the
bottom far field of the domain is positive. Due to the shear, it
is observed that mean coefficient of lift becomes negative. This
trend is consistent with those reported in the literature on both
square as well as circular cylinder, e.g., Cheng et al., 2007; Kang,
2006. Fig. 2c and d exhibit steady and unsteady behaviors,
respectively. Therefore, critical Reynolds number is in between
42 and 44, i.e., Recr = 43 ± 1. When K = 0.1, the lift coefficient
has reached periodic state much earlier than that in the case of
uniform flow.

Variation of instantaneous lift coefficient for shear parameter
K = 0.2 is shown in Fig. 2e and f. The mean lift coefficient further
shifted to the negative side at Re = 38, the lift coefficient be-
comes steady, whereas at Re = 40 it is time periodic time depen-
dent. Therefore, the critical Reynolds number is within
Recr = 39 ± 1. From the above observation, one can conclude that
critical Reynolds number decreases with increasing shear
parameter.

5.2. Instantaneous vorticity

Fig. 3 shows the instantaneous spanwise component of vorticity
for K = 0.0, 0.1 and 0.2 at Reynolds number corresponding to before
and after the critical Reynolds number. Fig. 3a, c and e is before the
critical Reynolds number and the vorticity is steady. For a particu-
lar value of K with increasing Reynolds number, the instability
developed in the far field. Eventually, the flow becomes time
dependent. Fig. 3b, d, and f is after the critical Reynolds number
and there is unsteadiness in the vorticity. Unsteadiness is devel-
oped in the far field and propagating towards the cylinder. When
K = 0.0, there is no separation at the leading edge, which has also
been observed from the previously reported studies carried out
near by this Reynolds number (Sohankar et al., 1997). With
increasing K, the approaching velocity magnitude is different on
the top and bottom sides thus the wake becomes asymmetric
about the center line. The wake is tilted towards the lower velocity
side and the stagnation point has moved towards the higher veloc-
ity side on the front face. Because of this, there is a separation of
shear layer from the bottom leading edge when K = 0.2 and top
shear layer still remains attached to the cylinder. This might be
the cause for negative mean lift coefficient with increasing shear
parameter.



Table 5
Comparison of mean quantities between two blockage ratios

Re Xu = 20d

B = 6.25% B = 10%

St �CD
�CL St �CD

�CL

K = 0.0 45 – – – – 1.602 0.000
47 – – – 0.122 1.579 0.000
44 – 1.447 0.000 – – –
46 0.122 1.438 0.000 – – –

K = 0.1 42 – – – – 1.577 �0.077
44 – – – 0.122 1.555 �0.071
40 – 1.420 �0.094 – – –
42 0.107 1.416 �0.091 – – –

K = 0.2 38 – – – – 1.527 �0.147
40 – – – 0.107 1.514 �0.140
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5.3. Influence of blockage

In order to understand the influence of blockage ratio on the re-
sults, calculations are carried out with two blockage ratios viz. 10%
and 6.25%. For both the blockage ratios, inlet domain size is fixed at
Xu = 20d. At the blockage ratio of 6.25% and for K = 0.2, there is a
negative velocity at the lower velocity side of the cylinder and hence
this case is avoided. The mean quantities and critical Reynolds num-
ber are compared in Table 5. The blockage ratio has an effect on the
critical Reynolds number as well as on the mean quantities. For the
uniform flow (K = 0.0), the critical Reynolds number is observed at
46 ± 1 and 45 ± 1, respectively, when B = 10% and 6.25%. These crit-
ical values are lower than those reported by Sohankar et al. (1998)
and Kelkar and Patankar (1992). Sohankar et al. (1998) placed the
critical Reynolds number at 51.2 ± 1 with 5% blockage ratio using
linearized Stuart–Landau equation. Kelkar and Patankar (1992) re-
ported critical Re = 53 with 14.2% blockage ratio. Norberg and co-
workers (taken from Sohankar et al., 1998) have estimated the crit-
ical Reynolds number to be in the range Recr = 47 ± 2. When K = 0.1,
the critical Reynolds numbers are observed at 43 ± 1 and 41 ± 1,
respectively for B = 10% and 6.25%. Strouhal number is unaffected
when K = 0.0, but it reduced to St = 0.107 from 0.122 when K = 0.1
and B = 6.25%. The mean drag coefficient is increasing with increas-
ing blockage ratio. For both the blockage ratios, the mean lift coeffi-
cient is negative when K = 0.1.

6. Conclusions

In the present study, time dependent calculations for a two
dimensional flow around a square cylinder with a linear shear at
the inlet have been carried out. The purpose of the simulations is
to identify the critical Reynolds number at which the flow becomes
periodic time dependent when the inlet flow is subjected to linear
shear and the corresponding effect on the mean drag coefficient.
For uniform approach flow (K = 0.0), calculated critical Reynolds
number reasonably agrees with the literature. With increasing
shear parameter, the critical Reynolds number and mean drag coef-
ficient decreases. Two blockage ratios are considered to identify
the possible dependency of the critical Reynolds number. Both crit-
ical Reynolds number and mean drag coefficient are found to in-
crease with increasing blockage ratio. This is the first such
reported study to consider the effect of inlet shear and blockage ra-
tio on critical Reynolds number.
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